Localization and organization of the central pattern generator for hindlimb locomotion in newborn rat.

نویسندگان

  • J R Cazalets
  • M Borde
  • F Clarac
چکیده

An in vitro preparation of newborn rat isolated brainstem/spinal cord was used in order to locate the spinal network responsible in mammals for producing patterned locomotor activity. The spinal cord was partitioned by building Vaseline walls at various lumbar levels. When a mixture of serotonin and N-methyl-D,L-aspartate was bath applied to the upper lumbar cord (L1/L2 segments), rhythmic locomotor-like activity was induced and recorded in all the lumbar segments (from L1 to L5). Conversely, when the mixture of transmitters was bath applied to the lower lumbar cord, only tonic activity was induced in the lower lumbar segments. Intracellular recordings performed on motoneurons revealed that during elicited L1/L2 locomotor-like activity, they received a rhythmic synaptic drive that was often below the threshold for spiking, because the excitability of the neurons was too low. When the L1/L2 segments were isolated, their burst production capacities remained. The network located at the L1/L2 level was found to be responsible not only for generating the rhythm but also for organizing its alternating pattern. We demonstrated that the rhythmic synaptic drive that the motoneurons receive during locomotor-like activity comes directly from the L1/L2 network and that there is no relay at the segmental level. We conclude from our study that the network that organizes locomotion in the newborn rat is not segmentally distributed but is restricted to a specific part of the cord. This finding has important consequences, since it means that it is now feasible to study the activity of the rhythmic spinal network independently from that of the motoneurons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using the Adaptive Frequency Nonlinear Oscillator for Earning an Energy Efficient Motion Pattern in a Leg- Like Stretchable Pendulum by Exploiting the Resonant Mode

In this paper we investigate a biological framework to generate and adapt a motion pattern so that can be energy efficient. In fact, the motion pattern in legged animals and human emerges among interaction between a central pattern generator neural network called CPG and the musculoskeletal system. Here, we model this neuro - musculoskeletal system by means of a leg - like mechanical system cal...

متن کامل

Gait Generation for a Bipedal System By Morris-Lecar Central Pattern Generator

The ability to move in complex environments is one of the most important features of humans and animals. In this work, we exploit a bio-inspired method to generate different gaits in a bipedal locomotion system. We use the 4-cell CPG model developed by Pinto [21]. This model has been established on symmetric coupling between the cells which are responsible for generating oscillatory signals. Th...

متن کامل

Prominent role of the spinal central pattern generator in the recovery of locomotion after partial spinal cord injuries.

The re-expression of hindlimb locomotion after complete spinal cord injuries (SCIs) is caused by the presence of a spinal central pattern generator (CPG) for locomotion. After partial SCI, however, the role of this spinal CPG in the recovery of hindlimb locomotion in the cat remains mostly unknown. In the present work, we devised a dual-lesion paradigm to determine its possible contribution aft...

متن کامل

FINAL ACCEPTED VERSION Deletions of rhythmic motoneuron activity during fictive locomotion and scratch provide clues to the organization of the mammalian central pattern generator

We examined the features of spontaneous deletions of bursts of motoneuron activity that can occur within otherwise rhythmic alternating flexor and extensor activity during fictive locomotion and scratch in adult decerebrate cats. Deletions of activity were observed both in hindlimb flexor and extensor motoneuron pools during brainstem-stimulation evoked fictive locomotion but only in extensors ...

متن کامل

Spinal circuitry of sensorimotor control of locomotion.

During locomotion many segmental hindlimb reflex pathways serve not only to regulate the excitability of local groups of motoneurones, but also to control the basic operation of the central pattern-generating circuitry responsible for locomotion. This is accomplished through a reorganization of reflexes that includes the suppression of reflex pathways operating at rest and the recruitment durin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 15 7 Pt 1  شماره 

صفحات  -

تاریخ انتشار 1995